Sorting algorithms are crucial in computer science and play a major role in almost every application. One such algorithm is Stooge Sort, which is a recursive sorting algorithm with a relatively simple implementation.

The algorithm, which was invented in 1973 by James B. Stooge, is known for its efficiency in sorting large data sets.

In this article, we will explore the concept of Stooge Sort, the algorithm, its steps, and how to implement it in Python. 1)to Stooge Sort:

Stooge Sort is a recursive sorting algorithm that is used to sort an array of integers in ascending order.

The algorithm is known for its efficiency in sorting a large number of data and is used in various applications, including numerical analysis, database management, and more. The primary objective of Stooge Sort is to arrange the array elements in a sorted order while using the minimum number of calls to the recursive function.

The time complexity of the algorithm is O(n^(log3/log1.5))

## Steps included in Stooge Sort algorithm:

The algorithm for Stooge Sort works by comparing the first and last elements in an array. If the first element is greater than the last element, then the two elements swap places.

Then, the algorithm takes the first two-thirds of the array and applies the same comparison and swap to these elements. Finally, the algorithm takes the last two-thirds of the array and applies the comparison and swap recursively until the list is sorted.

## The steps involved in the Stooge Sort algorithm are:

1. Create a function for Stooge Sort that accepts three parameters: an array, start, and end.

This function will recursively call itself until the array is sorted. 2.

Calculate the size of the array by subtracting the start index from the end index. 3.

Compare the first and last elements in the array. If the first element is greater than the last element, swap the elements.

4. If there are more than two elements in the array, then calculate the remaining third (i.e., size/3) and recursively call the same function with the start and the start + two-thirds index.

5. Similarly, recursively call the same function with the end – two-thirds index and end if there are more than two elements in the remaining two-thirds.

6. Once all the recursive calls are completed, the array will be sorted.

2) Implementing Stooge Sort in Python:

Stooge Sort can easily be implemented in Python. The following code snippet shows the implementation of the Stooge Sort algorithm in Python:

def stoogeSort(arr, start, end):

if start >= end:

return

# If the first element is smaller than the last element, swap them

if arr[start] > arr[end]:

temp = arr[start]

arr[start] = arr[end]

arr[end] = temp

# If the array has more than two elements, recursively call the function

if end – start + 1 > 2:

mid = (end – start + 1) // 3

# Recursively sort first two-thirds of the array

stoogeSort(arr, start, end – mid)

# Recursively sort the last two-thirds of the array

stoogeSort(arr, start + mid, end)

# Recursively sort the first two-thirds of the array again

stoogeSort(arr, start, end – mid)

# Once the array is sorted, return the sorted array

return arr

To implement Stooge Sort in Python, we need to define a function called stoogeSort that accepts three parameters: an array, start, and end.

Once the function is defined, we calculate the size of the array by subtracting the start index from the end index. Then, we compare the first and the last elements in the array and swap them if necessary.

Finally, we recursively call the function three times, for the first two-thirds of the array, then the last two-thirds, and then the first two-thirds again. Code explanation for each step:

1.

The function stoogeSort() accepts three parameters: arr, start, and end. 2.

If start is greater or equal to end, we return to exit the function since the array has already been sorted. 3.

If the first element is greater than the last element, we swap the elements using a temporary variable. 4.

Once we have swapped the elements, we check if there are more than two elements in the array. If there are, we calculate the remaining third as mid = (end – start + 1) //3.

This is done to calculate the indexes of the first and last two-thirds of the array. 5.

We then recursively call the same function with the start and the end – mid index to sort the first two-thirds of the array. 6.

We then recursively call the same function with start + mid and end to sort the last two-thirds of the array. 7.

Finally, we recursively call the function again with the start and end – mid index to sort the first two-thirds of the array again. 8.

Once the array is sorted, the sorted array is returned. Conclusion:

Stooge Sort is a popular sorting algorithm that can sort a large number of elements efficiently.

The algorithm, which is recursive, works by comparing the first and last elements in an array, swapping them if necessary, and then recursively calling the function with the first two-thirds and last two-thirds of the list until the list is sorted. In this article, we’ve explored the steps involved in the Stooge Sort algorithm and how to implement it in Python.

We hope that this article has given you a good understanding of Stooge Sort, and how to use it to sort your data. 3) Example outputs:

To better understand the application of Stooge Sort in sorting arrays in Python, we can take some example inputs and analyze the output.

## Example inputs:

Let’s assume we have an array of numbers given below:

## 4 2 8 12 6 3 1

After applying the Stooge Sort algorithm to this array, we would get:

Sorted array: 1 2 3 4 6 8 12

## Unsorted and sorted array output:

Consider another example to demonstrate how Stooge Sort algorithm works. We have an array of integers with the following values:

## 5 2 7 1 6

Lets apply the Stooge Sort algorithm to this array and observe the output. First, the array is divided into thirds by computing the value n/3:

## 5 2 7 1 6

Next, the algorithm compares the first and last values of each third and swaps them if required. In this case, the first and last values of the first third should be swapped:

## 5 2 7 1 6

## 7 2 5 1 6

Now the algorithm calls for another recursion of Stooge Sort on the first two-thirds of the array, which results in another comparison and swap:

## 2 7 5 1 6

## 1 7 5 2 6

Eventually, the first two-thirds of the array is sorted. The algorithm moves onto the last two-thirds of the array and recursively calls itself on that section:

## 1 5 7 2 6

## 1 2 5 6 7

Finally, the algorithm calls Stooge Sort again on the first two-thirds of the array.

## 1 2 5 6 7

## The resulting array is sorted in ascending order and is given by:

Sorted array: 1 2 5 6 7

4) Conclusion:

In conclusion, Stooge Sort is a useful recursive sorting algorithm that can efficiently sort large arrays of integers in ascending order. The algorithm divides the array into thirds and compares the first and last elements of each third, swapping them if necessary.

This process is repeated recursively to sort each third of the array until the entire array is sorted in ascending order. Stooge Sort also has an optimal time complexity of O(n^(log3/log1.5)).

In this article, we have learned the steps involved in the Stooge Sort algorithm and how to implement it in Python. We have also analyzed some example inputs and corresponding outputs to better understand the functionality of the algorithm.

Overall, Stooge Sort is a powerful tool for sorting large datasets quickly and efficiently. In conclusion, Stooge Sort is an efficient recursive sorting algorithm that can handle large data sets and arrange array elements in ascending order using a minimum number of function calls.

It works by comparing the first and last elements of each third of an array, recursively calling the same function to sort the first and last two-thirds, and finally sorting the first two-thirds again when the whole array is almost sorted. It has an optimal time complexity of O(n^(log3/log1.5)), making it a useful tool in applications such as numerical analysis and database management.

By understanding the steps involved in Stooge Sort algorithm and how to implement it in Python, we can utilize this powerful tool to analyze data more effectively.